Search results for "Anodic alumina membranes"

showing 10 items of 30 documents

Fuel Cell Performances of Bio-Membranes Made of Chitosan-Polyelectrolyte Thin Films and Nanowires into Anodic Alumina Membranes

2012

Chitosan (CS) / Phosphotungstic acid (PTA) polyelectrolytes in the shape of thin films and nanowires supported by Anodic Alumina Membranes (AAM) have been fabricated through solution cast and filtration techniques, respectively. Their ability to function in a H2/O2 fuel cell under mild conditions (room temperature, low humidity and low Pt loading) is proved for the first time. The fabricated membrane electrode assemblies produce power peaks of ~20 mW cm-2 for both films and nanowires. The CS/PTA films (20-40 μm thick) are able to produce a quite constant power density of ~10 mW cm-2 recorded for at least 7 h. The gradual decrease of the power output with time observed for CS/PTA nanowires i…

ChitosanMaterials scienceChitosan (CS)Alumina membranesNanowireAnodic Alumina Membranes (AAM)Phosphotungstic acid (PTA) polyelectrolyteChitosan-polyelectrolytePolyelectrolyteAnodeAnodic Alumina membraneChitosanfuel cellbio-membranechemistry.chemical_compoundMembranethin films and nanowireSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryFuel cellsThin filmAnodic Alumina MembranesECS Meeting Abstracts
researchProduct

Nanostructures Fabrication by Template Deposition in Anodic Alumina Membranes

2009

NanowireNanotubeNanostructureSettore ING-IND/23 - Chimica Fisica ApplicataElectrodepositionAnodic Alumina Membranes
researchProduct

Anodic alumina membranes as template for the synthesis of 1-D metal oxide and hydroxide nanostructures

2008

Anodic alumina membranes with highly ordered cylindrical pores and tuneable geometry have been prepared (pore diameters=20−200 nm; pore density 1012-1014 pores/m2; thickness: 20-100 mm) by controlling the anodizing process of aluminum in phosphoric, oxalic and sulphuric acid. The influence of different parameters (initial treatment of aluminium surface, composition of electrolyte, temperature and applied potential) on the final characteristics of the membranes have been investigated. The use anodic alumina membranes as template for the electrosynthesis of some metal hydroxides and oxides 1-D nanostructures (nanowires and nanotubes) will be also proved.

Materials scienceAnodizingInorganic chemistryGeneral EngineeringOxidechemistry.chemical_elementElectrolyteAnodic alumina membranes Hydroxides Nanotubes Nanowires Template electrodepositionElectrosynthesisMetalchemistry.chemical_compoundMembranechemistryAluminiumvisual_artvisual_art.visual_art_mediumHydroxide
researchProduct

Electrochemical Fabrication of Sn-Co Nanowires in Anodic Alumina Templates

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical Deposition Anodic Alumina Membranes SnCo alloys Nanowires Lithium Batteries
researchProduct

NANOWIRES AND THIN FILMS OF CIS/CIGS OBTAINED BY ELECTRODEPOSITION AS ABSORBER FOR SOLAR CELLS

2011

solar cellanodic alumina membranesSettore ING-IND/23 - Chimica Fisica Applicatathin filmnanowiretemplate synthesielectrodepositionsemiconductor
researchProduct

Processo di produzione di filamenti nanometrici in lega amorfa Sn-Co

2008

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical deposition Lithium Battery Anodic alumina membranes Nanowires SnCo alloy
researchProduct

Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures

2004

Thin film fuel cells have been fabricated by impregnation of inorganic porous membranes with inorganic proton conductor. Anodic alumina membranes (50 μm thick and pore diameter of 200 nm), filled with CsHSO4 salt have been used as protonic conductor in a hydrogen-oxygen fuel cell working between 423 and 443 K in dry atmosphere. Polarization curves at 433 K showing ohmic control with open circuit values near 0.8 V and short circuit current around 8 mA cm−2 have been obtained. Possible causes of degradation as well as alternative routes to overcome some of the problems encountered with this approach will be reported. Keywords: Solid acid, Anodic alumina membranes, Pore filling, Thin film fuel…

Thin film fuel cellSolid acidMaterials scienceAnodic alumina membraneNanoporousOpen-circuit voltageProton exchange membrane fuel cellIntermediate temperature fuel cellAnodelcsh:ChemistrySettore ING-IND/23 - Chimica Fisica Applicatalcsh:Industrial electrochemistrylcsh:QD1-999Chemical engineeringAnodic alumina membranes Intermediate temperature fuel cell Pore filling Solid acid Thin film fuel cellElectrochemistryThin filmPore fillingSolid acid; Anodic alumina membranes; Pore filling; Thin film fuel cell; Intermediate temperature fuel cellPolarization (electrochemistry)Short circuitlcsh:TP250-261Proton conductor
researchProduct

Electrochemical synthesis and characterization of self-standing metal oxide nanostructures

2009

NanowireNanotubeMetal oxideSettore ING-IND/23 - Chimica Fisica ApplicataElectrodepositionAnodic Alumina MembranesTemplate Electrosynthesi
researchProduct

Electrodeposition of lead dioxide nanowires with a high aspect ratio

2008

Settore ING-IND/23 - Chimica Fisica ApplicataTemplate Electrosynthesis Anodic Alumina Membranes Nanowires Lead Dioxide
researchProduct

Optimized bath for electroless deposition of palladium on amorphous alumina membranes

2006

A new bath for the electroless deposition of palladium on anodic alumina (AA) membranes is proposed. It was found that the optimal conditions for the uniform deposition of palladium, with minimal damage to the AA membranes, were under conditions of pH 8.4 and plating times shorter than 30 min. The deposited Pd layer was detected by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The morphology of the AA membrane before and after plating was examined by scanning electron microscopy (SEM). EDX analysis revealed that palladium was deposited only on the surfaces of the membrane and Sn ions, coming from the sensitizing bath, were incorporated into the palladium layer. EDTA in…

inorganic chemicalsMaterials scienceScanning electron microscopeInorganic chemistrychemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsSurfaces Coatings and FilmsAmorphous solidMembranechemistryAluminiumPlatingMaterials ChemistryFourier transform infrared spectroscopyElectroless deposition Palladium Dehydrogenation Anodic alumina membranesLayer (electronics)PalladiumSurface and Coatings Technology
researchProduct